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ABSTRACT: A long-standing goal of synthetic biology is to rapidly engineer new regulatory circuits from simpler devices. As
circuit complexity grows, it becomes increasingly important to guide design with quantitative models, but previous efforts have
been hindered by lack of predictive accuracy. To address this, we developed Empirical Quantitative Incremental Prediction
(EQuIP), a new method for accurate prediction of genetic regulatory network behavior from detailed characterizations of their
components. In EQuIP, precisely calibrated time-series and dosage-response assays are used to construct hybrid phenotypic/
mechanistic models of regulatory processes. This hybrid method ensures that model parameters match observable phenomena,
using phenotypic formulation where current hypotheses about biological mechanisms do not agree closely with experimental
observations. We demonstrate EQuIP’s precision at predicting distributions of cell behaviors for six transcriptional cascades and
three feed-forward circuits in mammalian cells. Our cascade predictions have only 1.6-fold mean error over a 261-fold mean
range of fluorescence variation, owing primarily to calibrated measurements and piecewise-linear models. Predictions for three
feed-forward circuits had a 2.0-fold mean error on a 333-fold mean range, further demonstrating that EQuIP can scale to more
complex systems. Such accurate predictions will foster reliable forward engineering of complex biological circuits from libraries of
standardized devices.
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One of the key challenges in synthetic biology is to
accurately predict the behavior of novel biological

systems, thereby enabling faster and more effective engineering
of such systems.1−3 This challenge is becoming a critical issue,
given the growing gap between the exponential increase in
length of DNA sequences that can be readily synthesized3−9

and the much slower increase in the complexity of genetic
circuits that have been demonstrated.9−14 Accurate predictions
of the behavior of genetic circuits are an important ingredient
for addressing this gap. As the number of genetic elements in a
circuit increases, the number of candidate designs increases
exponentially. Accurate predictions help cope with this
exponential explosion by dramatically reducing the number of
candidate designs that must be considered. Predicting circuit

behavior, however, has been extremely difficult, and without
reliable predictions, even relatively simple circuits have typically
required extensive and costly tuning to achieve the desired
results.9,10,12,15

Recently, there have been major steps toward improving the
accuracy of genetic circuit predictions. First, genetic elements
are now being characterized using calibrated and standardized
measurements.16−19 Second, several investigations have pro-
vided means of combining families of primitive elements of a
transcriptional unit, such as promoters and 5′UTRs, in order to
more reliably and predictably control constitutive gene
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expression levels.20−23 For gene regulation, progress has been
made toward accurate predictions of single self-regulating
negative feedback transcriptional units,24 which may exhibit
decreased variability,25 increased variability,26 or oscillatory
behavior,27 depending on conditions. For multicomponent
regulatory circuits, however, there is a critical need for a
fundamentally new approach to prediction. Prior efforts have
either focused on characterizing a complex circuit and then
predicting the influence of modulating or replacing specific
elements11,27−29 or else have suffered from reduced precision
when parts were first characterized and then subsequently used
for predictions of a more complex circuit.
Prior methods for predicting multicomponent regulatory

circuits have typically relied on explicit biochemical models,10,28

such as Hill functions or chemical reaction networks, that
depend strongly on the completeness and correctness of
models of relevant cellular mechanisms. Such models are also
frequently under-constrained by experimental data and thus
require significant parameters to be set by heuristics or untested
assumptions, rather than through direct (or indirect)
experimental observations. This is a critical problem for
predictions: the inherent uncertainty of an under-constrained
model means that the same observation can be explained by a
number of different sets of parameter values.30 The predictive
accuracy of a model is therefore impaired, because even if the
model fits observations for one particular use, if the wrong
parameters are chosen it is likely to fail on future predictions. In
sum, although there has been much recent progress in
characterization and prediction of genetic parts and circuits,
even the behavior of a “simple” circuit such as a two-repressor
cascade cannot generally be predicted accurately and reliably.
We thus focus on the prediction of combinational genetic
circuits (i.e., circuits without feedback or state), as both an

important goal in its own right and as a step toward prediction
of circuits with more complex dynamics such as oscillations and
bistability.
We address the current challenges of multicomponent circuit

prediction with a new method, Empirical Quantitative
Incremental Prediction (EQuIP), that models expression of
each gene using a piecewise function of regulatory inputs,
circuit copy number, and time, based strictly on high-precision
experimental observations. EQuIP predicts the behavior of a
biological circuit by mathematically composing, in accordance
with circuit topology, these gene expression models along with
models of exponential dilution and decay. As can be expected,
accurate circuit predictions require accurate models. To this
end, EQuIP ensures that significant observable phenomena are
incorporated in each gene expression model whether or not
they agree with current mechanism hypotheses and also ensures
that every parameter of the model is directly grounded in
experimental data. Given current limitations in the under-
standing of biochemical mechanisms and in the ability to
determine relevant parameter values through experiment, the
flexibility of piecewise approximation is highly valuable. A
piecewise function can directly approximate unmodeled or
poorly modeled mechanisms and can substitute simple
empirical functions for mechanisms whose parameters cannot
be determined from observable data. EQuIP thus combines
mechanistic models (i.e., derived from the underlying molecular
processes) and phenotypic models (i.e., models aiming to
capture observed behavior with minimal assumptions), using
mechanistic models where the underlying parameters can be
adequately determined and phenotypic approximation where
they cannot. This combination greatly improves the accuracy
with which the behavior of biological circuits can be predicted.

Figure 1. Stages of EQuIP from data gathering to predictions. (A) Experimental observation of the behavior of regulatory and constitutive elements
in cells, where these elements are combined with additional biological circuitry for calibrated measurement (top: stage 1). Behavior of constitutive
elements is measured over time. For regulatory elements, the relationship between input, circuit copy number (indicated by different colored lines),
and output is measured at a single time point. Data is used to build rate functions for time-dependent regulated production and for loss of protein
concentration, which can be mathematically integrated for computational simulation (bottom: stage 2). (B) The behavior of a biological circuit is
predicted by linking production functions for each regulatory relation and loss functions for each relevant protein, according to circuit topology, then
simulating concentrations over time according to the network of rate functions (stage 3).
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To provide circuit predictions, EQuIP operates in three main
stages (Figure 1). In the first stage (Figure 1a top), we measure
gene expression of constitutive and regulated elements using
calibrated flow cytometry assays, with all measurements
converted to equivalent standardized units. These measure-
ments are taken at various combinations of time and regulatory
inputs sufficient to precisely characterize the expression
dynamics of all relevant circuit components. In the second
stage, these measurements are used to compute two sets of rate
functions (Figure 1a bottom). A regulated production function
is a mapping from regulatory input (e.g., concentration of a
transcriptional repressor), circuit copy number, and time, to the
gene production rate. A loss function specifies the rate at which
a molecule’s concentration decreases due to dilution or
degradation. We can combine these two functions to describe
the time evolution of a regulated gene product. In the third
stage of EQuIP, the rate functions for multiple elements are
combined to simulate the time evolution of more complex
regulatory circuits (Figure 1b). Time evolution simulations are
carried out by composing the rate functions according to the
circuit topology and computing the integral with respect to

time for various combinations of input and circuit copy
number. As currently formulated, EQuIP can be applied to
combinational circuits with relatively strong expression and low
cross-interference, in conditions similar to those under which
the devices were characterized. In the remainder of the paper,
we present details of EQuIP and then demonstrate that its
circuit simulations accurately predict experimental observations.
In particular, we characterize three regulatory relations
(transcriptional repressors TAL14, TAL21, and LmrA, each
acting on a corresponding promoter) in mammalian HEK293
cells and use those characterizations to precisely predict the
behavior of all six two-repressor cascades that can be made
from these repressor/promoter pairs, as well as three feed-
forward circuits constructed from the same elements. We
conclude by evaluating the contribution of the various
components of EQuIP to its precision in predicting composite
circuit behavior.

■ RESULTS AND DISCUSSION
The goal of EQuIP is to predict the behavior of regulatory
circuits, which we test in this paper through prediction of two-

Figure 2. EQuIP characterization via time-series and dosage-response assays. (A) Biological circuit architecture for calibrated measurements, using
fluorescent reporter proteins to quantify induced expression of repressor, regulated expression of output, and constitutive expression as an indicator
of relative circuit copy number. EBFP2, a blue fluorescent protein, is input (IFP); EYFP, a yellow fluorescent protein, is output (OFP); mKate, a red
fluorescent protein, is constitutive. (B) Time series characterization shows a linear increase in the fraction of cells constitutively expressing a
fluorescent reporter, beginning a short time after transfection, until reaching saturation at approximately 70% transfection efficiency. Dotted lines
show ±2 standard deviations. (C) Progression of mean fluorescence is similar for constitutive and activator-driven fluorescence, implying little
impact from transcriptional activation delays. Normalized expression is computed by dividing by mean MEFL for t = 48−72. (D) Relations between
input, copy number, and output for TAL14, TAL21, and LmrA: data from 12 different inducer dosages is segmented into subpopulations by
constitutive fluorescence (plus marks) and grouped by subpopulation across dosages (colored lines). Insets show histograms of constitutive
fluorescent protein expression used for segmenting the subpopulations; only colored bins have sufficient samples and separation from untransfected
cells and are therefore included in the input/output curves. Extrapolation beyond the range measured in each transfer curve experiment is shown
with dashed lines (see Supporting Information Section 6).
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repressor transcriptional cascades and feed-forward circuits. We
model a transcriptional circuit using two types of functions
(regulated production and loss), each taking current concen-
trations as input and yielding rates of concentration change as
output. A transcriptional circuit, such as a two-repressor
cascade, is then simulated by integrating a network of regulated
production and loss functions, as described above. To restrict
the scope of the problem, we consider only transient
transfections of combinational circuits comprising orthogonal
regulatory elements (see Supporting Information Section 2)
and use each repressor/promoter pair at most once in any
given circuit.
The first stage of EQuIP is to gather experimental data

characterizing the regulated production dynamics for each
repressor/promoter pair and the loss dynamics for each protein
(Figure 1A, top). We characterize these dynamics with two
experiments (Figure 2): a time series assay, which provides the
mechanistic components of both production and loss models,
and a dosage-response assay measured at a single time point,
which provides the phenotypic components of the production
model. To obtain precise and commensurate units in our
models, we apply the TASBE protocol for calibrated flow
cytometry, which allows us to use Molecules of Equivalent
Fluorescein (MEFL)31 as a consistent proxy unit for protein
concentration (see Supporting Information Section 3).
All time-series and dosage-response characterization assays

use circuits built with the same template (Figure 2A). The
purpose of this circuit topology is to measure the behavior of a
repressor/promoter pair at various levels of repressor

concentration. We chose to regulate concentration of repressor
by doxycycline/rtTA induction32,33 as indicated by EBFP2. The
concentration of the output gene product is indicated by EYFP,
and constitutive mKate serves as a transfection marker and an
indicator of relative circuit copy number.34 All promoters that
we characterize in this paper are hybrid promoters that also
require Gal4 activation (see Supporting Information Section 2
for discussion of this modular approach to mammalian
promoter design).
For the time series experiment, we measured constitutive and

transcriptional activator driven expression for 72 h post-
transfection. We found that the fraction of cells with observable
(i.e., above autofluorescence) constitutive expression of a
fluorescent protein increases linearly over time, beginning
some short time after transfection, and finally saturates at
approximately 70% of cells (Figure 2b). This observation is
consistent with typical lipofection protocols and a model
whereby plasmids enter the nucleus during mitosis (per the
standard lipofection hypothesis35) in an unsynchronized
population of mammalian cells. Given the expected stability
of our fluorescent and repressor proteins, this mechanism plus a
constant rate of constitutive production can be used to create a
quantitative model of transfection and fluorescent protein
production. Fitting against both the percentage of expressing
cells and mean constitutive mKate in expressing cells (Figure
2C) gives a mean initial delay of 25 h and cell division on
average every 20 h (which correlates well with independent
hemocytometer measurements as well; for detailed discussion
of growth rate measurements, see Supporting Information

Figure 3. EQuIP produces close agreement between computational predictions and experimental data for two-stage cascades. (A) Biological circuit
architecture for repressor cascades using TAL14, TAL21, and LmrA (repressor choice indicated as R1 and R2). Fluorescent reporters quantify input,
output, and relative circuit copy number as in Figure 2. (B, C) Plots compare input/output relations for predictions (circles) and experimental data
(pluses) for two of the cascades (others shown in Supporting Information Section 6). The predictions include all points that use extrapolation for
less than 10% of the simulation steps. Insets as in Figure 2D.
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Section 4). We also note that expression of a fluorescent
protein activated by constitutive rtTA3 and VP16Gal4 has no
significant time lag compared to expression of mKate from a
constitutive promoter, implying that, for this circuit, transcrip-
tional activation delays are not significant and may be omitted
from our production models. In contrast, even a short lag until
repressors accumulate to the levels required for them to have
significant impact on gene expression may result in strong
transient expression from their respective promoters, and
therefore, we model the time course of repressor accumulation.
From this experiment, we derive three mechanistic elements

of our models. First, the cell division time provides a good
approximation of the loss rate, since the proteins used are
expected to be relatively stable. Second, the cell division time is
also used to create an inverse function that takes an observed
output expression and calculates the production rate over time
that would produce that output expression (Supporting
Information Section 5). This inverse function will be used to
create the production rate function of a transcriptional unit
from dosage-response data. Finally, simulations of gene
expression take into account the mean initial delay in
determining the length of time to simulate (Supporting
Information Section 4).
We characterize each repressor device with a dosage-

response experiment using the same characterization circuit
(Figure 2A) as the time series experiment. For these
experiments, we measure output as a function of input at a
single point in time. We characterized the regulatory relation-
ship between three transcriptional repressors (TAL14, TAL21,
and LmrA; see Supporting Information Section 2) and a
corresponding promoter for each, 72 h after transfection
(Figure 2D). The observed relationships between input and
output fluorescence were strongly affected by the relative
number of circuit copies in the cells. Currently, there is not
sufficient understanding of the underlying biological processes
to create well-constrained models, based entirely on mecha-
nistic principles, that accurately match the experimentally
observed input/output relationships in Figure 2D. Instead, we
estimate output gene expression for a given input level and
relative copy number phenotypically by piecewise interpolation
or extrapolation of the observed outputs (lines in Figure 2D).
This is then transformed into a hybrid phenotypic/mechanistic
model of regulated gene production using the inverse function
derived from the time-series experiment (Supporting Informa-

tion Section 5). Hence, this regulated production model retains
every feature of the experimentally observed behavior.
To validate EQuIP, we constructed all two-repressor

cascades comprising TAL14, TAL21, and LmrA following the
architecture shown in Figure 3A. Figure 3B and C illustrates the
72 h input/output predictions vs experimental data for the
TAL14-TAL21 and TAL21-TAL14 cascades, respectively. The
experimentally observed output levels for different combina-
tions of input and copy number have a wide range: across the
six cascades, there is a 261-fold geometric mean difference
between the highest and lowest subpopulation output means
(e.g., the ratio of highest and lowest plus symbols in Figure 3B
and C). The mean error of predicted versus observed output
across all input/copy-number combinations is only 1.6-fold for
all six transcriptional cascades (Figure 4A). Predicting the
output across many subpopulations also provides a prediction
of the distribution of output expression for the overall
population. The accuracy with which EQuIP predicts
population mean and variation is even better than for individual
subpopulations: the mean error of predicted versus exper-
imentally observed output across all cascades and inductions is
1.4-fold for both population mean and population standard
deviation (Supporting Information Section 6).
With such accuracy, EQuIP may guide circuit design and

debugging. For example, EQuIP correctly predicts which
combinations of repressors are best matched to provide the
greatest differential expression between fully induced and
uninduced states in the cascades. Specifically, EQuIP predicts
that TAL14-TAL21 and TAL21-TAL14 cascades will have
significantly stronger gain than all cascades involving LmrA
(due to TAL21 and TAL14 having a better match in their
dynamic ranges) and that TAL21-TAL14 will have approx-
imately twice the gain of TAL14-TAL21, and these predictions
are borne out by our experiments (Supporting Information
Section 6).
We further evaluate the contribution to accurate prediction

of different aspects of the EQuIP method. The first two stages
of EQuIP (Figure 1A) consist of a sequence of data gathering
and processing steps to produce the model for each device.
Figure 4B evaluates the relative contribution of each step in this
sequence to the final high prediction accuracy by comparing
with a typical prior methodordinary differential equations
using Hill equations fit to device characterization dataapplied
to the data produced by each step in the data processing

Figure 4. Comparison of the precision of EQuIP predictions for two-stage cascades. (A) Ratio of highest and lowest output means for all induction/
copy-number subpopulations for given cascades (e.g., the highest and lowest plus symbols in Figure 3B and C) and respective mean prediction errors.
(B) Prediction errors for Hill function models fit to partial implementations of EQuIP vs the full EQuIP method, showing the improvement in both
accuracy (mean error) and precision (95% envelope).
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sequence. As described in Supporting Information Sections 3,
10, and 11, EQuIP first converts flow cytometry data to
calibrated MEFL, then uses the constitutive marker to separate
the subpopulation of successfully transfected cells, segments
into bins by constitutive fluorescence level, then finally builds a
piecewise model using the means of each bin. We thus created
models generated from (1) population means in arbitrary units
(our baseline model), (2) population means in calibrated
MEFL, (3) population mean MEFL for transfected cells only,
and (4) per-bin MEFL for transfected cells only. Each model is
an ODE using Hill equations parametrized by curve fit against
the observed data for each of the three repressors. We then
compare the accuracy of EQuIP and these four models in
predicting population means across the full range of
doxycycline inductions of the various cascades. The results in
Figure 4B indicate that the most important contributions to
EQuIP’s improved precision versus the baseline model come
from calibration of measurement units and modeling with
piecewise functions (full details in Supporting Information
Section 7). The intermediate steps are prerequisites for
piecewise models but do not appear to markedly improve
prediction quality on their own. In all cases, the inaccuracies in
prediction appear to derive primarily from the insufficient
constraints that the experimental data provides for fitting Hill
equations. Thus, although the fit often appears good (as shown
in Supporting Information Section 7), this may not accurately

represent the true system and may not correlate well with the
predictive accuracy. Indeed, all three intermediate models show
no statistically significant differences in performance (Support-
ing Information Section 7).
Finally, to validate the generalizability of the EQuIP method,

we tested its efficacy in predicting the behavior of a more
complex feed-forward circuit. This circuit, shown in Figure 5A,
is similar to the cascade except that it adds a second path for
repressing the output directly through Dox induction of the
second repressor. We applied EQuIP to predict the behavior of
all six possible feed-forward circuits 72 h post-transfection. We
then constructed the three with the greatest variety of predicted
behaviors and observed them experimentally. As before, we find
that the predictions have a high mean accuracy, as illustrated by
the example comparison of predicted and observed expression
levels in Figure 5B. Across all three feed-forward circuits, there
is an overall mean error of only 2.0-fold across a 333-fold
geometric mean difference between the highest and lowest
subpopulation output means (Figure 5C). Such a small
degradation in accuracy in comparison to the cascades is
expected for a more complicated circuit and is an indicator that
EQuIP is likely to scale to even more complex circuits.
For synthetic biology to become a full-fledged engineering

discipline, it must be possible to accurately predict the behavior
of novel biological circuits from that of their constituent parts.
Our results with EQuIP on six transcriptional cascades and

Figure 5. EQuIP produces close agreement between computational predictions and experimental data for feed-forward circuits. (A) Biological circuit
architecture for feed-forward circuits using TAL14, TAL21, and LmrA (repressor choice indicated as R1 and R2). Fluorescent reporters quantify
input, output, and relative circuit copy number as in Figure 2. (B) Plot compares input/output relations for predictions (circles) and experimental
data (pluses) for one of the circuits (others shown in Supporting Information Section 6). The predictions include all points that use extrapolation for
less than 10% of the simulation steps. Insets as in Figure 2D. (C) Ratio of highest and lowest output means for all induction/copy-number
subpopulations for given feed-forward circuits (e.g., the highest and lowest plus symbols in B) and respective mean prediction errors.
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three feed-forward circuits are the first demonstration that
highly accurate prediction of circuit behavior is possible and
provide a quantitative benchmark for future efforts to be
compared against. One of the most remarkable features of our
results is that they are accomplished entirely through readily
accessible observations of fluorescence, without any detailed
biochemical analysis or modeling. This does not argue against
the value of detailed biochemical modeling: indeed, we were
able to use mechanistic biochemical models for the temporal
components of our production and loss functions. Rather, our
results demonstrate the power of using precise measurements
to inform a composable model that describes precisely those
phenomena that can be experimentally observed, no more and
no less.
Our results show a number of opportunities where improved

modeling or observation could further increase the quality of
predictions. For example, Figure 3B and C and Supporting
Information Figures 11 and 12 demonstrate that EQuIP
generally provides its best predictions when neither circuit copy
number nor induction are particularly high. One improvement
would be to obtain additional input/output data at higher input
levels or to genetically engineer regulatory devices with
stronger responses at lower input levels, thus decreasing the
amount of extrapolation required (Supporting Information
Section 5). Another issue is that extreme fluorescence intensity
values can be affected at the low end by cell autofluorescence
and at the high end by PMT saturation (though this affects only
the <5% of our predictions that are in these ranges); this can be
addressed by assays that vary plasmid dosages and instrument
settings for different levels of induction. Other possible areas
for improvement are understanding the effect of large circuit
copy numbers (which may influence cell behavior or create
metabolic load), and accounting for retroactivity effects (e.g.,
from one TALER regulating multiple downstream promoters)
and cellular resource sharing (e.g., VP16Gal4 as a driver for
multiple hybrid promoters). With appropriate characterization
experiments, such effects should be able to be incorporated as
new empirical rate terms, similar to the production and loss
models already in the EQuIP framework.
More generally, the specific EQuIP implementation

presented here can be applied only to circuits that are
combinational (meaning there is no feedback) and in which
cells do not exhibit strongly divergent behaviors under the same
conditions (e.g., noise-induced bistability). Our results,
however, provide a basis for extending EQuIP to larger and
more complex circuits, and to circuits that include feedback (via
initial state assumptions) and divergent populations (using
distributions rather than means), as discussed in Supporting
Information Section 5.1. The ability to predict circuit behavior
is highly valuable for engineering biological systems, as it allows
efficient selection of circuit elements and offers guidelines for
optimization of devices to obtain a desired function.
Accordingly, EQuIP supports the synthetic biology goal of
creating libraries of modular, standard, and well-characterized
components for rapid development of complex systems. Our
framework may also be used for studying natural systems,
although accurate predictions may initially be more difficult due
to the complexity of many natural regulatory interactions.
EQuIP thus forms a basis both for advances in design tools and
for new investigations in systems biology. Combining these
advances with emerging libraries of biological devices will usher
in a new era of exponential growth in our ability to engineer
biological systems.

■ METHODS

Culture Conditions. HEK 293 FT cells (Invitrogen) were
cultured in DMEM medium (CellGro), supplemented with
10% FBS (PAA Laboratories), 2 mM L-glutamine (CellGro),
1% Strep/pen (CellGro), 1% non-essential amino acids
(NEAA) (HyClone), and 10 000× Fungin (Invivogen) at 37
°C and 5% CO2. Cells were passaged in a 100 mm dish by
removing culture media, adding 2 mL 0.05% trypsin, waiting at
room temperature for 2 min and then resuspending the cells in
5 mL of cell culture media and diluting to desired concentration
with additional cell culture media.

Transfection. Transfections were carried out with Meta-
fectene Pro (Biontex Laboratories). Cells were seeded 1 day
prior at 2 × 105 cells per well in a 24 well plate. 500 ng of DNA
was mixed into 60 μL of DMEM (without supplements). 1.5
μL of Metafectene was then added and the tube was gently
mixed and kept at room temperature for 15 min to form the
DNA−liposome complex. Fresh media was added to the cells
directly prior to transfection (500 μL of DMEM with
supplements). The DNA−Metafectene solution was then
added dropwise to the well. Induction of the circuit was
performed at this time as well by the addition of a small
molecule (i.e., doxycycline). The media was subsequently
changed daily with the appropriate amount of inducer. Each
circuit was realized with each transcriptional unit encoded on a
separate plasmid, for a total of 6 plasmids (5 plasmid circuits
add a blank plasmid), and cotransfected: see Supporting
Information Section 2 for details of promoter design and
Supporting Information Section 8 for plasmid sequences. The
DNA for the circuits transfected were in the ratio 1:3:3:1:1:1;
where the transcriptional units that contained the “TRE”
promoter were the ones that were transfected at 3× the amount
of the others for signal matching purposes. For the time series
experiment, we measured EBFP2 with 2000 nM Dox for rtTA
activation. EYFP was measured for Gal4 activation with 0 nM
Dox, and we used TAL21 for R1. We also assumed that the
time dynamics are not significantly affected by choice of
repressor. Dose−response data was taken with a logarithmic
series of Dox dosages. Feed-forward circuits data was taken in a
separate experiment with a slight variation on the protocol. See
Supporting Information Section 9 for more details. The cell-to-
cell variation due to intracellular variation in copy number was
typically small in our experiments (Supporting Information
Section 10).

Flow Cytometry. Flow cytometry data was taken at 72 h
post transfection. Cells were again trypsinized as previously
described. The cells were then centrifuged at 150g for 10 min at
4 °C. The supernatant was removed and the cells were
resuspended in 1× PBS that did not contain calcium or
magnesium. A BD LSR Fortessa was used to take flow
cytometry measurements with the following settings: EBFP2,
measured with a 405 nm laser and a 450/50 filter, EYFP,
measured with a 488 nm laser and a 530/30 filter, and mKate,
measured with a 561 nm laser and a 610/20 filter. Flow
cytometry data was analyzed as described in Supporting
Information Sections 3, 11, and 12. EQuIP also included
internal cross validation and checks to determine the quality of
the data collected and identify potential experimental problems
(Supporting Information Section 13).

Cloning. Creation of the plasmids used for this project was
carried out using the Gateway system from Invitrogen. We used
a multisite cloning strategy with two entry vectors. One entry
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vector contained the promoter and the other contained the
transcription factor or gene. The destination vector was
modified from its original sequence to contain an insulator 5′
to L4 and a polyadenylation signal 3′ to the R1 site.
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